

Радиобиологические исследования в ОИЯИ

Е.А. Красавин

Основатели

Андрей Владимирович Лебединский

Василий Васильевич Парин

Олег Георгиевич Газенко

Юрий Григорьевич Григорьев

Основатели

Первые радиобиологические эксперименты на синхроциклотроне

Первые радиобиологические эксперименты на синхроциклотроне

1978 г.

Создание сектора биологических исследований Лаборатории ядерных проблем

Проблема 05Э

Установка «Геном»

Бактериальные клетки

Влияние репарации ДНК на характер зависимости ОБЭ от ЛПЭ

Одиночные повреждения ДНК

Кластерные повреждения ДНК

1-я Премия ОИЯИ

1988 г.

создание Отдела биофизики Лаборатории ядерных проблем

Главная задача:

Исследование механизмов мутагенного действия ускоренных заряженных частиц

Radiation-induced mutagenesis

Тест-штаммы Эймса (Salmonella typhimurium). Индукция реверсий в гистидиновом опероне

Induction of mutagenic DNA repair by heavy ions

 $FMNH_2 + RCHO + O_2 \rightarrow FMN + RCOOH + H_2O + h\nu$

1995 г.

Создание Отделения радиационных и радиобиологических исследований ОИЯИ

Индукция структурных (делеционных) ton B trp⁻ мутаций у клеток E.coli излучениями с разной ЛПЭ

Mutagenic belt

Mutagenic belt of heavy particle track

Индукция нестабильных хромосомных аберраций в лимфоцитах человека

Индукция транслокаций в лимфоцитах человека разными типами излучений

Dose, Gy

<u>Создание Лаборатории</u> радиационной биологии ОИЯИ

Генетическая сеть реализации генных мутаций у клеток E.coli при действии ионизирующих излучений

Повреждения ДНК

"Comet assay" for detection of DNA lesions

Page • 31

The mechanism of DNA DSB repair in human cells

Перспективы исследований на период 2017/23

А. <u>Повреждение и восстановление структуры ДНК</u> <u>при действии ускоренных тяжёлых ионов</u>

ВИЗУАЛИЗАЦИЯ ДВУНИТЕВЫХ РАЗРЫВОВ ДНК

Тяжелые заряженные частицы в космосе

1010 109 He 108 107 С 106 Si Относительный поток 105 IR/Wa SAR 104 STOCK. 10³ 102 10 Ba 1 Pb 10-1 10.2 90 100 30 40 60 70 80 10 20 50 Заряд ядра (\mathbf{Z})

Состав Галактического космического излучения

Энергетический спектр ГКИ и возможности нуклотрона ОИЯИ

Поток ядер Галактического излучения

Интегральный поток ядер ГКИ группы углерода и железа <u>10⁵ част/см²/год</u>

Плотность потока частиц с z 20 в открытом космосе составляет 160 <u>част/см²/сутки</u>

Треки тяжёлых ионов в ядерной эмульсии

Z = 70

Распределение дозы излучения в веществе

1 единица дозы

1 единица дозы

Ионы железа

Единичный трек одновременно повреждает большое количество клеток различных тканей

Последствия биологического действия тяжёлых ионов ГКИ

Генетические нарушения (канцерогенез)

Парушение функций ЦНС

□ Нарушение зрительных функций

Опухоли гарднеровой железы

Nelson, 2006

Нарушение функций зрения

Катарактогенез и повреждение сетчатки

 Π

Катарактогенез

Хрусталик и сетчатка

cytoplasm micro-vacuolization, fiber cell swelling, nuclear fragmentation

UV-индуцированная агрегация β_L - кристаллина при действии ионов B^{11}

электроретинограмма

Функциональные нарушения сетчатки при введении мутагена

Островский М.А., 2011

Page • 48

Центральная нервная система

-ЦНС как критическая система

В ходе марсианской миссии:

от 2-х до 13% нервных клеток будут пересекаться по крайне мере одним ионом железа;
от 8 до 46% нервных клеток будут пересекаться ПО крайней мере одной частицей с Z≥15;
каждое ядро клетки в течение 3-х дней будет пересекаться протоном и в течение 30 дней – альфа-частицей.

Треки ионов железа визуализируются маркерами двунитевых разрывов ДНК

Водный лабиринт Морриса

Rat 214-126 Morris Water Maze Learning Test #1

> Tracking with: Noldus Ethovision

(c) Jean-Etienne Poirrier, 2006 Cyclotron Research Center University of Liege

jepoirrier@ulg.ac.be http://www.poirrier.be/~jean-etienne/

Ионы ⁵⁶Fe - 1 ГэВ/нуклон 1,5 Гр

Когнитивные тесты (водный лабиринт Р. Морриса и др.)

Через 1 месяц после облучения

M.Rabin, 2005

Тест К. Барнс

Нарушение процессов пространственного обучения при действии ионов ⁵⁶Fe

Спустя 3 месяца после облучения

■ Симуляция облучения ■ 20 сГр 1 ГэВ/нуклон ⁵⁶Fe

Нарушение процессов пространственного обучения при действии ионов ¹⁶О и ⁴⁸Ті у мышей

Спустя 6 недель после облучения частицами с энергией 600 МэВ/нуклон

Нарушение структуры дендритов нейронов в прелимбической области спустя 8 недель после облучения

В ходе марсианской миссии около 20 миллионов нервных клеток из, примерно, 46 миллионов, входящих в структуры гиппокампа, будут пересекаться одной и более частиц с $Z \ge 15$.

гиппокамп

Трек тяжёлой
 заряженной частицы

Initial experiments with monkeys

Irradiation with proton medical beam, 170 MeV

Irradiation with ¹²C ions, 500 MeV/amu at nuclotron

НТС ОИЯИ 17 апреля 2015

Благодарю за внимание